method suffers from the fact that the starting 3-chloro-2-butenol (from the hydrolysis of commercial 1,3dichloro-2-butene, a mixture of Z and E isomers) is not stereochemically homogeneous. The final iodide is a 5:1 mixture of Z and E isomers.

A similar mixture (Z/E 4:1) could be obtained more simply by sodium borohydride reduction of the unsaturated aldehyde  $18^{10}$  available in essentially two steps from propargyl *tert*-butyl ether.

The pure E isomer of 17 could be made by applying Corey's method<sup>11</sup> to the readily available trimethylsilylpropargyl alcohol 7.<sup>2</sup> Reduction with lithium aluminum hydride, followed by trapping with iodine at  $-78^{\circ}$  and coupling of the pure Z iodo alcohol (bp 62° (0.08 mm)) with lithium dimethylcuprate gave in 70% yield from 7 the pure E isomer 19 (bp 85–87°



(9 mm)): nmr  $\delta$  (CCl<sub>4</sub>) 5.80 (1 H, t, J = 6 Hz of q, J = 1 Hz, HC=C) 1.71 (3 H, d, J = 1 Hz, CH<sub>3</sub>). The alcohol was converted to the chloride (triphenylphosphine-carbon tetrachloride, 60% yield, bp 55-56° (12 mm)) which then gave the *E* iodide **20** (sodium iodide-2-butanone, 50°, 1 hr, evaporative distillation at 60° (20 mm)) in 80% yield.

The instability of some cuprates makes this method unsatisfactory for the synthesis of certain homologs of 6 in which  $R \neq H$ . After many attempts, the most general route to homologs was found to involve introduction of the silane function as the last step in the synthesis, as illustrated for the synthesis of 22. Alkyla-

$$\begin{array}{c} \overbrace{CH_{3}CCH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}C$$

tion of the dianion of propargyl alcohol (2 equiv of lithium amide in liquid ammonia-tetrahydrofuran) with the dioxolane of iodopropyl methyl ketone gave a 90% yield of 21, bp 99-107° (0.1 mm). Reduction and iodination (as in 17 to 18) then gave the crude Z iodo alcohol. Silylation of the hydroxyl group (hexamethyldisilazane-trimethylchlorosilane-pyridine) coupling with trimethylchlorosilane (as in 14 to 15) and hydrolysis of the silyl ether (5% potassium carbonate in 30% aqueous methanol, 42 hr, room temperature) gave, in 41% overall yield from propargyl alcohol, the silylated allylic alcohol 22 (6, R = CH<sub>3</sub>C(O)<sub>2</sub>CH<sub>2</sub>-CH<sub>2</sub>H<sub>2</sub>, X = OH) which should be useful for bis-annelation reactions by the vinylsilane method.<sup>12</sup>

(10) R. Mantione and Y. Leroux, J. Organometal. Chem., **31**, 5 (1971). (11) E. J. Corey, J. A. Katzenellenbogen, N. W. Gilman, S. A. Roman, and B. W. Erickson, J. Amer. Chem. Soc., **90**, 5618 (1968).

(12) We thank the National Science Foundation and the National Institutes of Health for their support of this work.

Gilbert Stork,\* Michael E. Jung, Ernest Colvin, Yves Noel

Department of Chemistry, Columbia University New York, New York 10027 Received February 19, 1974

## Reactions of LiCuHR. Selective Removal of Halo and Mesyloxy Groups and Reduction of $\alpha,\beta$ -Unsaturated Ketones

## Sir:

We wish to outline the scope and limitation of reactions utilizing Cu(I) complexes which can be conventionally represented by LiCuHR (R = alkyl and alkynyl). These mixed ate complexes achieve two operations, (i) reductive removal of halo and mesyloxy groups and (ii) conversion of  $\alpha,\beta$ -unsaturated ketones to the corresponding saturated compounds, and are evaluated in terms of reagent-to-substrate ratio, structure of R, solvent effect, temperature, and substrate. Of special significance is the superb selectivity of the newer reagents, compared to one  $[2LiAlH(OCH_3)_3 + CuI]$ previously reported,<sup>1</sup> and, moreover, invariable ligand transfer of hydrogen rather than the R group in all cases examined attracts mechanistic interest.<sup>2</sup> For instance,  $LiCuH(n-C_4H_9)$  converts ethyl 12-mesyloxystearate almost quantitatively into ethyl stearate within 2 hr at 25°, and cyclohex-3-envl mesylate provides cyclohexene without a detectable amount of cyclohexadiene. A summary of results is given below.

There are several methods to prepare CuH.<sup>3</sup> The Whitesides procedure<sup>3c</sup> is adopted and is used throughout this work.<sup>4,5</sup> An equimolar amount of LiR was added to a stirred suspension of CuH either in ether or tetrahydrofuran maintained at  $-40^{\circ}$ .<sup>6,7</sup>

**Removal of Halo and Mesyloxy Groups.**<sup>1,8</sup> Using 2bromononane, we have examined reaction variables that influence the reactivity of the ate complexes and the yield of product (*n*-nonane contaminated with a minute amount (3-4%) of *n*-nonene). Table I entries 1-4 show that 4 molar equiv of the cuprate is required to complete the reduction within a short reaction time. Of several complexes differing in R, the reaction pro-

(1) S. Masamune, P. A. Rossy, and G. S. Bates, J. Amer. Chem. Soc., 95, 6452 (1973).

(2) In the absence of accurate rate data, we cannot exclude the (remote) possibility of disproportionation ( $2LiCuHR \rightleftharpoons LiCuH_2 + LiCuR_2$ ) although such a reaction has not been confirmed for the cuprate species. See (a) H. O. House, D. G. Koespell, and W. J. Campbell, J. Org. Chem., 37, 1003 (1972); (b) G. H. Posner, C. E. Whitten, and J. J. Sterling, J. Amer. Chem. Soc., 95, 7788 (1973). For approximate reaction rates of  $LiCu(n-C_4H_3)_2$ , see, e.g., (c) G. M. Whitesides, W. F. Fischer, Jr., J. S. Filippo, Jr., R. W. Bashe, and H. O. House, *ibid.*, 91, 4871 (1969); (d) E. J. Corey and G. H. Posner, *ibid.*, 90, 5615 (1968).

(3) (a) E. Wiberg and W. Henle, Z. Naturforsch. B, 7, 250 (1952); (b)
J. A. Dilts and D. F. Shriver, J. Amer. Chem. Soc., 90, 5769 (1968); 91, 4088 (1969); (c) G. M. Whitesides, J. S. Filippo, Jr., E. R. Stredronsky, and C. P. Casey, *ibid.*, 91, 6542 (1969); G. M. Whitesides and J. S. Filippo, Jr., *ibid.*, 92, 6611 (1970); (d) S. A. Bezman, M. R. Churchill, J. A. Osborn, and J. Wormald, *ibid.*, 93, 2063 (1971); (e) M. A. Kazankova, I. G. Malykhina, M. B. Terenina, and I. F. Lutsenko, J. Gen. Chem. USSR, 42, 2129 (1972).

(4) The ate complex derived from CuH that is prepared from CuBr and  $(C_2H_b)_3SnH^{3e}$  resulted in poor yields of reduction products for reasons as yet unknown to us.

(5) Although reductive removal of some halides with CuH was previously noted (ref 3c), we found that 1-bromononane was virtually unaffected with CuH in either ether or THF at  $-40^{\circ}$  for 12 hr, conditions under which the reduction was complete with most of the ate complexes. (6) An alkynyl lithium solution was prepared from the alkyne and

halide-free methyl lithium available from the Foote Mineral Co. H. O. House and W. F. Fischer, Jr., J. Org. Chem., 33, 949 (1968). (7) The 1:1 ratio of CuH/RLi should be accurately followed. An

(7) The 1:1 ratio of CuH/RLi should be accurately followed. An excess of either reagent greatly decreases the yield of products. CuH is uniformly brown (light to dark) and any mottling or separation of pale yellow solid (presumably CuI) should not be observed.

(8) Other methods are (a) R. O. Hutchins, B. E. Maryanoff, and C. A. Milewski, *Chem. Commun.*, 1097 (1971); (b) C. W. Jefford, D. Kirkpatrick, and F. Delay, J. Amer. Chem. Soc., 94, 8905 (1972); (c) H. C. Brown and S. Krishnamurthy, *ibid.*, 95, 1669 (1973); (d) R. E. Ireland, D. C. Muchmore, and U. Hengartner, *ibid.*, 94, 5098 (1972).

| Entry | LiCuHR<br>R                     | Molar ratio<br>reagent/substrate | Solvent             | Reaction<br>time (hr) | Temp, °C | % yield   |
|-------|---------------------------------|----------------------------------|---------------------|-----------------------|----------|-----------|
| 1     | n-C <sub>4</sub> H <sub>9</sub> | 1:1                              | $(C_2H_6)_2O$       | 1 and 3               | 25       | 15 and 15 |
| 2     | n-C <sub>4</sub> H <sub>9</sub> | 2:1                              | $(C_2H_5)_2O$       | 1 and 3               | 25       | 26 and 26 |
| 3     | n-C <sub>4</sub> H <sub>9</sub> | 3:1                              | $(C_2H_5)_2O$       | 1 and 3               | 25       | 58 and 70 |
| 4     | n-CAH.                          | 4:1                              | $(C_{2}H_{5})_{2}O$ | 1                     | 25       | 100       |
| 5     | t-C4Ho                          | 4:1                              | $(C_2H_5)_2O$       | 3 and 12              | 25       | 35 and 80 |
| 6     | i-C <sub>3</sub> H <sub>7</sub> | 4:1                              | $(C_2H_5)_2O$       | 3                     | 25       | 25        |
| 7     | $C \equiv C - n - C_3 H_7^b$    | 4:1                              | $(C_2H_5)_2O$       | 4                     | 0        | 3-5       |
| 8     | $C \equiv C - n - C_3 H_7^b$    | 4:1                              | $(C_2H_5)_2O$       | 4                     | 25       | 40        |
| 9     | $C \equiv C - n - C_3 H_7^b$    | 4:1                              | THF                 | 4                     | 25       | 0         |
| 10    | n-C <sub>4</sub> H <sub>9</sub> | 4:1                              | $(C_2H_5)_2O$       | 1                     | 0        | 70        |
| 11    | n-C <sub>4</sub> H <sub>9</sub> | 4:1                              | THF                 | 1                     | 0        | $\sim 0$  |
| 12    | $n-C_4H_9$                      | 4:1                              | THF                 | 3                     | 25       | 10        |

<sup>a</sup> All runs were performed on a 6 mmol scale with respect to the reagent. The yields are based on relative glpc peak areas, corrected for the sensitivity of the detector, using decane as reference. <sup>b</sup> References 6 and 14.

| Table II. | Reduction | with 4 | Molar | Equiv c | of LiCuH | ( <i>n</i> -C₄H₃) in | Ether at 25° <sup>a</sup> |
|-----------|-----------|--------|-------|---------|----------|----------------------|---------------------------|
|-----------|-----------|--------|-------|---------|----------|----------------------|---------------------------|

| Entry | Substrate                         | Time (hr)     | Product                                       | % yield                    |
|-------|-----------------------------------|---------------|-----------------------------------------------|----------------------------|
| 1     | A Br                              | 1             |                                               | 85                         |
| 2     | 1-Bromoadamatane                  | 2             | Adamantane                                    | 70                         |
| 3     | 1-Bromonaphthalene                | 3             | Naphthalene                                   | 95                         |
| 4     | n-Octyl tosylate                  | 2.5           | <i>n</i> -Octane                              | 80                         |
| 5     | Cyclohexyl tosylate               | 2.5           | Cyclohexane                                   | 80                         |
| 6     | Cyclohex-3-enyl tosylate          | 2             | Cyclohexene (no diene)                        | 75                         |
| 7     | 1-Methylheptyl mesylate           | 1             | n-Octane                                      | 100                        |
| 8     | Ethyl octanoate                   | 2             | Octan-1-ol                                    | 2-3                        |
| 9     | <i>n</i> -Heptyl acetate          | 2             | Heptanol                                      | 20                         |
| 10    | Heptaldehyde <sup>b</sup>         | 0.5           | Heptan-1-ol                                   | 100                        |
| 11    | Cyclohexanone <sup>b</sup>        | 0.5           | Cyclohexanol                                  | 100                        |
| 12    | 2-Bromononane and ethyl octanoate | 2             | Nonane and ethyl octanoate                    | 95 and 100                 |
| 13    | Ethyl 12-mesyloxystearate         | 2             | Ethyl stearate                                | 100<br>90 (isolated)       |
| 14    | MsO                               | 0.5           | CO <sub>2</sub> C <sub>2</sub> H <sub>3</sub> | 100                        |
| 15    | Ethyl 12-bromostearate            | 2             | Ethyl stearate                                | 85 (isolated)              |
| 16    | <b></b> 0                         | 0.5<br>(-40°) | <b></b> o                                     | 95                         |
| 17    | <b>~~</b> °                       | 0.5<br>(-40°) | $\sim - \circ$                                | 95                         |
| 18    |                                   | 2<br>(-40°)   |                                               | 85 (isolated) <sup>a</sup> |
|       |                                   |               | cis/trans<br>7:3°                             |                            |

<sup>a</sup> The conditions are the same as in Table I. Naphthalene was used as glpc reference in the case of the enone reductions. <sup>b</sup> Cf. L. T. Scott and W. D. Cotton, J. Chem. Soc., Chem. Commun., 320 (1973); E. J. Corey and I. Kuwajima, J. Amer. Chem. Soc., 92, 395 (1970). <sup>c</sup> Cis: R. L. Augustine and A. D. Broom, J. Org. Chem., 25, 802 (1960). Hydrogenation over Pd/C performed in our laboratory provided a 93:7 mixture of the cis and trans compounds. <sup>d</sup> 15% of the starting material recovered.

ceeded most satisfactorily with LiCuH(n-C<sub>4</sub>H<sub>9</sub>) (entires 4-9) and the reactivity significantly decreased in the case of R = alkynyl, as might be expected. Diethyl ether is definitely superior to tetrahydrofuran as a solvent (entries 4, 10-12, 8, 9). Preliminary kinetic studies of the reduction of 2-bromononane with Li-CuH(n-C<sub>4</sub>H<sub>9</sub>) over a temperature range of -40 to 20° showed that the reduction followed roughly secondorder kinetics. The smooth increase in rate as the temperature is raised indicates at least that the reagent is stable and undergoes no dramatic change in structure and degree of aggregation in solution over a wide range of temperature.<sup>2</sup>

The above information recommends 4 equiv of  $LiCuH(n-C_4H_9)$  in ether at 25° as a satisfactory reduction medium, and these conditions have been applied to a variety of substrates. Table II summarizes the results obtained with representative examples. Reduction of primary,<sup>9</sup> secondary, and tertiary halides and mesylates (or tosylates) proceeded well (entries 1-7)

(9) Some primary bromides (but not mesylates or tosylates) underwent elimination. This aspect is under investigation.

and requires no comment except that the homoallylic tosylate provided the corresponding alkene without complication (entry 6), as noted earlier. The aldehyde and ketone (vide infra) were reduced readily to the corresponding hydroxy compounds and again no incorporation of the n-C<sub>4</sub>H<sub>9</sub> group into the product is rather surprising. The ester group resisted reduction (entries 8 and 9) and in fact survived completely in both inter- and intramolecular competitive experiments (entries 12-15).

The selectivity evidently enhances the synthetic utility of the reagent.<sup>10</sup> Similar competition reactions with the earlier Cu(I) reagent<sup>1</sup> were erratic presumably due to incomplete formation of the Cu(I) ate complex, a small but variable amount of LiAlH(OCH<sub>3</sub>)<sub>3</sub> remaining in the reaction medium.

Reduction of  $\alpha,\beta$ -Unsaturated Ketones to Saturated Ketones.11 Although aldehydic and ketonic compounds (Table II, entries 10, 11) are readily reduced with the ate complexes, the carbonyl groups may survive as enolates, if 1,4- rather than 1,2-addition to the  $\alpha,\beta$ -unsaturated carbonyl systems proceeds.<sup>12</sup> The resulting enolate then would be utilized directly for further reactions such as alkylation and Michael addition.13 An extensive search for the optimal reaction conditions to achieve the conversion of cyclohex-2enone to cyclohexanone has been pursued in a manner similar to that described earlier. In short, the reactivity of LiCuHR as well as the yield of product decreases in the order of  $R = n - C_4 H_9 > C \equiv C - t - C_4 H_9 >$  $C = C - n - C_3 H_7$ , hydrogen being the only ligand transferred (no observable formation of 3-butylcyclohexanone with  $LiCuH(n-C_4H_9)$ ). Because of the higher susceptibility of the  $\alpha,\beta$ -unsaturated carbonyl system to this reduction than halo and mesyloxy groups, the reaction is complete within 0.5 hr at  $-40^{\circ}$  with LiCuH(*n*- $C_4H_9$ ) (4 equiv) (entry 16), and even with reagents with R = alkynyl (4 equiv) it proceeded to provide an acceptable yield of product, although somewhat higher temperatures were required. However, use of 6 molar equiv of the latter reagents (alkynyl) in ether improves the yield of cyclohexanone. Thus, the product was formed in 50 and 90% yields in 1 hr using LiCuH-(C=C-t-C<sub>4</sub>H<sub>9</sub>) at  $-40^{\circ}$  and  $0^{\circ}$ , and in 30 and 90% yields under the same conditions with LiCuH(C=C-n-C<sub>3</sub>H<sub>7</sub>).<sup>14</sup> Tetrahydrofuran does not offer any advantages over ether and appears to retard the reaction and induces side reactions in the case of  $R = n - C_4 H_9$ . We conclude that 4 molar equiv of  $LiCuH(n-C_4H_9)$  in ether at  $-40^{\circ}$  represents optimal conditions for the reduction of  $\alpha,\beta$ -unsaturated ketones, achieving efficient, high yield conversion under mild conditions and with operational simplicity.

According to the Whitesides procedure, <sup>3c</sup> 6.0 mmol

(10) Compare this selectivity with that observed or expected for the methods auoted in ref 8.

(11) For recent reviews on related subjects, see (a) G. H. Posner, Org. React., 19, 1 (1972); (b) J. F. Normant, Synthesis, 63 (1972).

(12) A recent view on the mechanistic aspect of cuprate reactions, see H. O. House and M. J. Umen, J. Org. Chem., 38, 3893 (1973), and references cited therein.

(13) E.g., ref 11b, p 79; J. E. Dubois, C. Lion, and C. Moulineau, Tetrahedron Lett., 177 (1971); C. Wakselman and M. Mondon, ibid., 4285 (1973); G. H. Posner and J. J. Sterling, J. Amer. Chem. Soc., 95, 3076 (1973); R. K. Boeckman, Jr., ibid., 95, 6867 (1973).

(14) For the use of a so-called nontransferable group as one of the cuprate ligands, see E. J. Corey and D. J. Beames, J. Amer. Chem. Soc., 94, 7210 (1972), and ref 2b.

of CuH was prepared under argon at  $-50^{\circ}$  in a 50-ml round-bottomed flask, equipped with a magnetic stirrer and sealed with a rubber septum. After the CuH was washed with four 20-ml portions of cold  $(-50^{\circ})$  ether, 15 ml of cold  $(-40^\circ)$  ether was added with stirring and then 6.0 mmol of cold n-BuLi in hexane (Foote Mineral Co.) was syringed into the flask over 1 min. The resulting dark brown solution (reagent partially insoluble) was stirred for 10 min. After addition of 610 mg (1.5 mmol) of ethyl 12-mesyloxystearate in 1 ml of ether, the cooling bath was removed and stirring was continued for 2 hr at room temperature. The reaction mixture was poured into aqueous saturated ammonium chloride solution, the ethereal layer was decanted and the aqueous layer was washed with 50 ml of ether. The combined ether extracts were processed in the usual manner to provide 400 mg (85%) of ethyl stearate (silicic acid chromatography). The same procedure was applied to 246 mg (1.5 mmol) of 6-methylbicyclo[4.4.0]dec-1-en-3-one, except that the reaction temperature was maintained at  $-40^{\circ}$ . The products weighed 246 mg (98%), consisting of 6-methylbicyclo-[4.4.0]decan-3-ones (85%) and starting material (15%) (Table II, entry 18).

Acknowledgment. The authors thank the Defense Research Board of Canada and Hoffmann-La Roche Inc., for financial support.

(15) 1967 National Research Council (Canada) Science Scholarship Awardee.

> Satoru Masamune,\* Gordon S. Bates,<sup>15</sup> Paris E. Georghiou Department of Chemistry, University of Alberta Edmonton, Alberta, Canada Received February 6, 1974

## A Stereoselective Synthesis of Partially Substituted 1,2,3-Butatriene Derivatives via Hydroboration

Sir:

We wish to report the first stereoselective synthesis of 1,2,3-butatriene derivatives. Almost a century ago van't Hoff<sup>1</sup> made a well-accepted prediction that cumulenes (1) with odd numbers of double bonds should



be capable of exhibiting cis-trans isomerism. Recent studies, both experimental<sup>2</sup> and theoretical,<sup>3</sup> have indicated that although the energy barrier to the cistrans isomerization of hexapentaenes (n = 5) is too low to permit separation of the two stereoisomers at ambient temperatures, separation of tetrasubstituted cisand trans-1,2,3-butatrienes is feasible. To date, however, no methods appear to have been available for the stereoselective synthesis of 1,2,3-butatriene derivatives.<sup>4</sup>

<sup>(1)</sup> J. H. van't Hoff, "Die Lagerung der Atome in Raume," Verlag F.

<sup>Vieweg und Sohn, Braunschweig, 1877, p 14.
(2) (a) R. Kuhn and K. L. Scholler,</sup> *Chem. Ber.*, 87, 598 (1954); (b)
R. Kuhn and D. Blum, *ibid.*, 92, 1483 (1959); (c) R. Kuhn and B. Schulz, ibid., 98, 3218 (1965); (d) R. Kuhn, B. Schulz, and J. C. Jochims, Angew. Chem., Int. Ed. Engl., 5, 420 (1966).
(3) M. J. S. Dewar and E. Haselback, J. Amer. Chem. Soc., 92, 590

<sup>(1970).</sup> 

<sup>(4)</sup> For an extensive review, see H. Fischer in "The Chemistry of Alkenes," S. Patai, Ed., Interscience, New York, N. Y., 1964, pp 1025-1159.